| |
Iron in Your Blood
Main
Article page |
Beauty articles
|
Health page |
Computers|
Diseases |
Education |
Entertainment |
Family
Business |Fitness|
Fruits and Vegetables
|
Jobs |
General |
Personality|
Technology
|
Tourism |
Useful Tips
General Knowledge |
Biography Page|
Heroes & Incredible peoples
|
Inventions
Health Page|
Diseases and Remedies |
Articles|
List of diseases
| Dentistry
By Dr. Mercola:
Iron is essential for human life, as it is a
key part of various proteins and enzymes, involved in the transport of
oxygen and the regulation of cell growth and differentiation, among many
other uses.
One of the most important roles of iron is to provide hemoglobin (the
protein in red blood cells), a mechanism through which it can bind to oxygen
and carry it throughout your tissues, as without proper oxygenation, your
cells quickly start dying.
If you have too little iron, you may experience fatigue, decreased immunity
or iron-deficiency anemia, which can be serious if left untreated. This is
common in children and premenopausal women.
But what many people fail to realize is that too much iron can be equally
deadly, and is actually far more common than iron deficiency, thanks to a
hereditary disease known as hemochromatosis.
This Health Issue Has Been of Major Importance to Me and My
Family
This test saved my dad’s life 20 years ago when
I discovered he had a ferritin
levelclose to 1000. It was because he has beta-thalassemia. With regular
phlebotomies, his iron
levels normalized and now the
only side effect he has is type 1 diabetes.
The high iron levels damaged his pancreatic islet cells and now he has what
is called “bronze” diabetes and so requires the use of insulin.
I also inherited this from him so this is a personal issue. Thankfully, I am
able to keep my iron levels normal by removing about a quart of blood a
year. This is removed not all at once but over a few dozen deposits.
I screened all my patients with ferritin levels and noticed nearly
one-fourth of them had elevated levels. So I would strongly encourage you
and your family to be screened annually for this, as it is SO MUCH easier to
prevent iron overload than it is to treat it.
Ferritin Screen – One of Your Most Important Health Tests
Checking your iron levels is easy and can
be done with a simple blood test called a serum ferritin test. I believe
this is one of the most important tests that everyone should have done on a
regular basis as part of a preventive, proactive health screen.
The test measures the carrier molecule of iron, a protein found inside cells
called ferritin, which stores the iron. If your ferritin levels are low, it
means your iron levels are also low.
The healthy range of serum ferritin lies between 20 and 80 ng/ml. Below 20
is a strong indicator that you are iron deficient, and above 80 suggests you
have an iron surplus. The ideal range is between 40-60 ng/ml.
The higher the number over 100 the worse the iron overload, with levels over
300 being particularly toxic and will eventually cause serious damage in
nearly everyone that sustains those levels long term. It’s important to find
out if your levels are high because your body has a limited capacity to
excrete iron, which means it can easily build up in organs like your liver,
heart and pancreas. This is dangerous because iron is a potent oxidizer and
can damage your body tissues contributing to serious health issues,
including:
Cirrhosis |
Liver cancer |
Cardiac arrhythmias |
Type one diabetes |
Alzheimer's disease |
Bacterial and viral infections |
Cancer researchers have also found new evidence that bowel cancers are two
to three times more likely to develop when dietary iron is too high in your
body.1
Risk Factors for Iron Overload
People with hemochromatosis are not the only
ones who may accumulate more iron than is healthy. While premenopausal women
who are menstruating regularly rarely suffer from iron overload, most adult
men and postmenopausal women tend to be at a high risk, as they don't have a
monthly blood loss (one of the best ways you can get rid of excess iron is
by bleeding).
Another common cause of excess iron is the regular consumption of alcohol,
which will increase the absorption of any iron in your diet. For instance,
if you drink wine with your steak, you will likely be absorbing more iron
than you need. Other potential causes of high iron levels include:
-
Cooking in iron pots or pans. Cooking acidic foods in these types of
pots or pans will cause even higher levels of iron absorption.
-
Eating processed food products like cereals and white breads that are
"fortified' with iron. The iron they use in these products is inorganic
iron, not much different than rust and it is far more dangerous than the
iron in meat.
-
Drinking well water that is high in iron. The key here is to make sure
you have some type of iron precipitator and/or a reverse osmosis water
filter.
-
Taking multiple vitamins and mineral supplements, as both of these
frequently have iron in them.
Could Reducing Your Iron Level Be a Safer Alternative to Statins?
We may have garnered some valuable
information about how iron drives inflammation from studying statins drugs,
of all things. Statins are of course, cholesterol
drugs. Statins have an anti-inflammatory effect on your body by reducing
oxidative stress, which is something the drug companies tend not to
disclose. The fact that statin drugs reduce inflammation, and reduce
inflammatory markers like C-reactive protein, may explain why statins
decrease heart attacks in
some people. This
benefit has nothing to do with the action of lowering cholesterol, but
rather the reduction of inflammation.
In a study published in the April 2013 issue of American
Journal of Public Health2,
researchers found that statins improved cardiovascular outcomes at least
partially by countering the proinflammatory effects of excess iron stores.
In this study, the improved outcomes were associated with lower ferritin
levels but not with “improved” lipid status. Researchers concluded iron
reduction might be a safe and low-cost alternative to statins. An earlier
study in the American
Heart Journal3 also
showed that people with a lower iron burden had less risk for heart attack
and stroke.
These studies add credence to what I learned a few years ago from Dr. Steven
Sinatra, one of the leading natural cardiologists in the world, that statins’
only health benefit is that of reducing inflammation.
This may be helpful for a small percentage of individuals who have a very
high risk of dying from a heart attack, but NOT for those who simply have
"high" cholesterol levels. Statin drugs are vastly overprescribed and are
not worth the risk for the vast majority of you. In some cases, they may
actually increase your risk
of stroke. If elevated iron is the driving force behind your
inflammation and cardiovascular disease, then it makes far more sense to simply
reduce your iron level, as opposed to taking a statin drug that has the
potential for many adverse effects.
What to Do if Your Iron Levels Are Too High
The good news if you find out that your
iron levels are elevated or you have hemochromatosis is that remedying the
condition is relatively simple. Some people advise using iron chelators like
phytic acid or IP6, but I tried that with my dad and it failed miserably so
I would not recommend it. Donating your blood is a far safer, more effective
and inexpensive approach for this problem.
If, for some reason, a blood donor center is unable to accept your blood for
donation you can obtain a prescription for therapeutic phlebotomy. At the
same time, you will want to be sure to avoid consuming excess iron in the
form of supplements, in your drinking water (well water), from iron
cookware, or in fortified processed foods.
Additionally:
-
Certain phenolic-rich herbs and spices, such as green tea and rosemary,
can reduce iron absorption4
-
The primary polyphenol in turmeric known as curcumin
actually acts as an iron chelator, and in mice studies, diets
supplemented with this spice extract exhibited a decline in levels of
ferritin in the liver5
-
Astaxanthin, which has been researched to have over 100
potential health benefits, has been shown to reduce iron-induced
oxidative damage6
The Ancient Origins of Iron Overload
How and why hemochromatosis – now one of
the most prevalent genetic diseases in the United States – emerged is the
subject of numerous theories and speculation – but its true history remains
a complex mystery. In a fascinating article on the topic, The
Atlantic7 recently
highlighted the notion that everyone who inherited the C282Y mutation
responsible for the majority of hemochromatosis cases got it from the
same person. In other words, one distant ancestor passed on the
mutation, which now favors people of Northern European decent.
No one knows the precise identity of the founder, but initial speculation
that it was someone of Irish descent has given way to the possibility that
it may have actually arisen in a Viking civilization or, even earlier, in a
central European hunter-gatherer.
It takes two inherited
copies of the mutation (one from the mother and one from the father) to
cause the disease (and even then only some people will actually get sick).
If you have just one mutation, you won’t become ill but you will absorb
slightly more iron than the rest of the population, a trait that may have
given people an advantage when dietary sources of iron were scarce.
Did the Hemochromatosis Mutation Emerge to Protect Humans from a
Carb-Heavy Agricultural Diet?
There is speculation that the
hemochromatosis mutation may have spread in ancient Europe around the time
that man transitioned from hunter-gatherer to farmer. Unlike the Paleolithic
diet of the “cavemen,” which
by necessity included a relatively balanced diet of iron-rich meat, fish and
plant foods, farming may have led humans to rely on an overabundance of
grain carbohydrates. The featured article reported:8
“Fossil evidence indicates early European farmers
stood roughly 6 inches shorter than their hunter-gatherer ancestors, a
possible indication of malnutrition… Average height and life expectancy
fell, as bone infections, dental cavities, and skeletal malformations
associated with anemia rose. While the exact composition of the
Paleolithic plate remains debated, most agree that European
hunter-gatherers ate more meat than those in modern farming communities.
And this animal protein was an excellent source of one familiar
micronutrient: iron.
The World Health Organization estimates that 1.6 billion persons
worldwide current suffer from the lack of red blood cells known as
anemia -- half of which may be caused by iron deficiency. One's inner
paleo might wonder whether this pandemic of iron deficiency began in the
Neolithic era as diets bloated with carbohydrates replaced those rich in
meat and fish.
Anemia decreases the oxygen carrying capacity
of the blood; if marked, this will hinder an individual's ability to
stay healthy, find food, and reproduce. The C282Y mutation increases
iron absorption, and it may have inadvertently protected carriers
against this threat.”
The Hemochromatosis Link to the Plague
Another intriguing theory suggests that
the hemochromatosis mutation may have protected against the Black Death of
the 14th century, by preventing the Yersinia
pestis bacteria from
reproducing inside of human immune cells.
“During the Black Death, mortality may have been highest, up to
50-66 percent, in the British Isles -- a future hotbed of hereditary
hemochromatosis … In this most unsympathetic environment, minute DNA
differences may decide survival or death. A genetic advantage would
quickly spread through the island population -- it would have less value
on the mainland where plague mortality may have been lower,” the
featured article reported.9
But this theory is challenged by conflicting information that
suggests the plague bacteria use iron from its host to enhance its ability
to infect cells. People with hemochromatosis may therefore be among the most
vulnerable to succumbing to plague infections, which suggests the mutation
may have nothing to do with survival. It could, perhaps, be an artifact of
natural selection or there may be a different explanation entirely…
| |
|